organic compounds

 $\mu = 0.11 \text{ mm}^{-1}$

 $0.31 \times 0.16 \times 0.12$ mm

19580 measured reflections

5188 independent reflections 3586 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.041$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-(2,4-Dimethoxybenzylidene)-3,4,5trihydroxybenzohydrazide ethanol solvate

Abeer A. Alhadi,^a Siti Munirah Saharin,^a Hapipah Mohd Ali,^a* Ward T. Robinson^a and Mahmood A. Abdulla^b

^aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^bDepartment of Molecular Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: hapipah@um.edu.my

Received 30 April 2009; accepted 19 May 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.121; data-to-parameter ratio = 20.5.

The title compound, C₁₆H₁₆N₂O₆·C₂H₅OH, was synthesized from 3,4,5-trihydroxybenzoylhydrazide and 2,4-dimethoxybenzaldehyde in ethanol. The compound is not planar, with the two aromatic planes of the two aromatic rings twisted by $15.6 (1)^{\circ}$. The hydroxy groups are involved in both intramolecular $O-H \cdots O$ and intermolecular $O-H \cdots N$ and O- $H \cdots O$ hydrogen bonds and a $C - H \cdots O$ interaction also occurs.

Related literature

For related compounds, see Abdul Alhadi et al. (2009). For the parent N'-(2-hydroxybenzylidene)benzohydrazide, see Lyubchova et al. (1995).

(3) À

(2) Å

Experimental

Crystal data	
$C_{16}H_{16}N_2O_6 \cdot C_2H_6O$	a = 7.8347 (1) Å
$M_r = 378.38$	b = 17.5412 (3) A
Monoclinic, $P2_1/n$	c = 13.0230 (2) Å

$\beta = 93.936 \ (1)^{\circ}$
V = 1785.53 (5) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.967, T_{\rm max} = 0.987$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 253 parameters $wR(F^2) = 0.121$ H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$ 5188 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2···O3	0.84	2.54	2.9325 (13)	109
O3−H3···O2	0.84	2.54	2.9325 (13)	110
O4−H4···O3	0.84	2.25	2.7009 (14)	114
$N1 - H1' \cdots O7^{i}$	0.88	2.04	2.8844 (15)	160
$O2-H2\cdots O1^{ii}$	0.84	1.86	2.6871 (13)	170
$O2-H2\cdots N2^{ii}$	0.84	2.57	2.9293 (15)	107
O3−H3···O1 ⁱⁱ	0.84	1.88	2.7200 (13)	177
O4−H4···O6 ⁱⁱⁱ	0.84	2.14	2.7366 (14)	127
$C14-H14\cdots O2^{iv}$	0.95	2.42	3.3539 (17)	167
Summature and as (i)			1 - 1 (::)	$1 \dots - 1 \dots $

Symmetry codes: (i) x, y - 1, z; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) x + 1, y, z + 1; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}.$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

The authors thank the University of Malaya for funding this study (Science Fund Grant 12-0-03-2031, 12-02-03-2051 and PJP FS350-2008)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2510).

References

Abdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, 0909. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Lvubchova, A., Cossé-Barbi, A., Doucet, J. P., Robert, F., Souron, J.-P. & Quarton, M. (1995). Acta Cryst. C51, 1893-1895.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, o1373 [doi:10.1107/81600536809018947]

N'-(2,4-Dimethoxybenzylidene)-3,4,5-trihydroxybenzohydrazide ethanol solvate

A. A. Alhadi, S. M. Saharin, H. Mohd Ali, W. T. Robinson and M. A. Abdulla

Experimental

A mixture of 3,4,5-trihydroxybenzoylhydrazide and 2,4-dimethoxybenzaldehyde were heated in ethanol (50 ml) for 12 h. The yellow crystals were obtained by recrystallization from ethanol.

Refinement

All H atoms were placed at calculated positions (C— H 0.95 - 0.99, N—H 0.88, and O—H 0.84 Å) with U_{iso} (H) set to 1.2 - 1.5 times U_{eq} (C,N,O)

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{16}H_{16}N_2O_6.C_2H_5OH$ at 70% probability level. Hydrogen atoms are drawn as sphere of arbitrary radius.

N'-(2,4-Dimethoxybenzylidene)-3,4,5-trihydroxybenzohydrazide ethanol solvate

$F_{000} = 800$
$D_{\rm x} = 1.408 {\rm Mg m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 3445 reflections
$\theta = 2.8 - 29.1^{\circ}$
$\mu = 0.11 \text{ mm}^{-1}$
T = 100 K
Block, yellow
$0.31 \times 0.16 \times 0.12 \text{ mm}$

Bruker APEXII CCD area-detector diffractometer	5188 independent reflections
Radiation source: fine-focus sealed tube	3586 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.041$
T = 100 K	$\theta_{\text{max}} = 30.5^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 10$

(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.967, T_{\max} = 0.987$	$k = -24 \rightarrow 24$
19580 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.121$	$w = 1/[\sigma^2(F_o^2) + (0.0566P)^2 + 0.3538P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
5188 reflections	$\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$
253 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
1.15941 (17)	0.21466 (7)	0.76768 (10)	0.0156 (3)
1.1458	0.2583	0.7248	0.019*
1.25203 (17)	0.22016 (7)	0.86245 (10)	0.0153 (3)
1.26837 (17)	0.15678 (8)	0.92716 (10)	0.0154 (3)
1.19696 (18)	0.08744 (8)	0.89317 (10)	0.0170 (3)
1.10756 (18)	0.08150 (8)	0.79830 (10)	0.0176 (3)
1.0605	0.0339	0.7760	0.021*
1.08672 (17)	0.14571 (7)	0.73529 (10)	0.0154 (3)
0.98683 (17)	0.14395 (8)	0.63409 (10)	0.0159 (3)
0.74521 (17)	0.00842 (8)	0.49550 (10)	0.0168 (3)
0.7539	-0.0296	0.5476	0.023 (4)*
0.64100 (17)	-0.00596 (8)	0.40063 (10)	0.0165 (3)
0.57036 (17)	-0.07846 (8)	0.38154 (10)	0.0163 (3)
0.47202 (17)	-0.09404 (8)	0.29061 (10)	0.0172 (3)
0.4236	-0.1431	0.2785	0.021*
	x 1.15941 (17) 1.1458 1.25203 (17) 1.26837 (17) 1.19696 (18) 1.10756 (18) 1.0605 1.08672 (17) 0.98683 (17) 0.74521 (17) 0.7539 0.64100 (17) 0.57036 (17) 0.47202 (17) 0.4236	x y $1.15941(17)$ $0.21466(7)$ 1.1458 0.2583 $1.25203(17)$ $0.22016(7)$ $1.26837(17)$ $0.15678(8)$ $1.19696(18)$ $0.08744(8)$ $1.10756(18)$ $0.08150(8)$ 1.0605 0.0339 $1.08672(17)$ $0.14571(7)$ $0.98683(17)$ $0.14395(8)$ $0.74521(17)$ $0.00842(8)$ 0.7539 -0.0296 $0.64100(17)$ $-0.07846(8)$ $0.47202(17)$ $-0.09404(8)$ 0.4236 -0.1431	xyz $1.15941(17)$ $0.21466(7)$ $0.76768(10)$ 1.1458 0.2583 0.7248 $1.25203(17)$ $0.22016(7)$ $0.86245(10)$ $1.26837(17)$ $0.15678(8)$ $0.92716(10)$ $1.19696(18)$ $0.08744(8)$ $0.89317(10)$ $1.10756(18)$ $0.08150(8)$ $0.79830(10)$ 1.0605 0.0339 0.7760 $1.08672(17)$ $0.14571(7)$ $0.73529(10)$ $0.98683(17)$ $0.14395(8)$ $0.63409(10)$ $0.74521(17)$ $0.00842(8)$ $0.49550(10)$ 0.7539 -0.0296 0.5476 $0.64100(17)$ $-0.07846(8)$ $0.38154(10)$ $0.47202(17)$ $-0.09404(8)$ $0.29061(10)$ 0.4236 -0.1431 0.2785

C12	0.44633 (18)	-0.03640 (8)	0.21828 (11)	0.0188 (3)
C13	0.51352 (19)	0.03637 (8)	0.23587 (11)	0.0209 (3)
H13	0.4939	0.0754	0.1859	0.025*
C14	0.60860 (18)	0.05093 (8)	0.32640 (11)	0.0190 (3)
H14	0.6533	0.1007	0.3389	0.023*
C15	0.2879 (2)	-0.11915 (8)	0.09897 (11)	0.0227 (3)
H15A	0.3824	-0.1557	0.0978	0.034*
H15B	0.2270	-0.1169	0.0307	0.034*
H15C	0.2087	-0.1354	0.1498	0.034*
C16	0.5321 (2)	-0.20516 (8)	0.44383 (12)	0.0247 (3)
H16A	0.4072	-0.2007	0.4358	0.037*
H16B	0.5647	-0.2364	0.5044	0.037*
H16C	0.5737	-0.2292	0.3824	0.037*
C17	0.7901 (2)	0.81507 (9)	0.72385 (14)	0.0313 (4)
H19A	0.6929	0.8370	0.6826	0.047*
H19B	0.7482	0.7866	0.7818	0.047*
H19C	0.8531	0.7806	0.6809	0.047*
C18	0.9073 (2)	0.87827 (9)	0.76416 (12)	0.0259 (3)
H18A	0.8458	0.9110	0.8113	0.031*
H18B	1.0074	0.8559	0.8038	0.031*
N1	0.92094 (15)	0.07647 (6)	0.60343 (9)	0.0168 (2)
H1'	0.9379	0.0357	0.6422	0.030 (5)*
N2	0.82556 (15)	0.07168 (6)	0.50974 (9)	0.0174 (2)
01	0.96209 (13)	0.20261 (5)	0.58110 (7)	0.0219 (2)
O2	1.32670 (14)	0.28879 (5)	0.88620 (7)	0.0218 (2)
H2	1.3569	0.2901	0.9493	0.033*
O3	1.35316 (13)	0.15568 (6)	1.02261 (7)	0.0209 (2)
H3	1.3877	0.1998	1.0381	0.031*
O4	1.21299 (15)	0.02350 (6)	0.95174 (8)	0.0273 (3)
H4	1.2718	0.0332	1.0065	0.041*
O5	0.60584 (13)	-0.13118 (6)	0.45673 (7)	0.0224 (2)
O6	0.35424 (14)	-0.04532 (6)	0.12604 (8)	0.0264 (3)
07	0.96498 (14)	0.92367 (6)	0.68270 (8)	0.0229 (2)
H7	1.0291	0.8975	0.6475	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0190 (6)	0.0138 (6)	0.0137 (6)	0.0025 (5)	-0.0015 (5)	0.0010 (5)
C2	0.0187 (6)	0.0123 (6)	0.0148 (6)	-0.0006 (5)	0.0000 (5)	-0.0015 (5)
C3	0.0175 (6)	0.0163 (6)	0.0119 (6)	0.0006 (5)	-0.0021 (5)	-0.0010 (5)
C4	0.0214 (7)	0.0143 (6)	0.0147 (6)	0.0000 (5)	-0.0029 (5)	0.0027 (5)
C5	0.0223 (7)	0.0140 (6)	0.0159 (7)	-0.0007 (5)	-0.0034 (5)	-0.0003 (5)
C6	0.0171 (6)	0.0156 (6)	0.0131 (6)	0.0011 (5)	-0.0020 (5)	-0.0006 (5)
C7	0.0175 (6)	0.0157 (6)	0.0141 (6)	0.0019 (5)	-0.0016 (5)	-0.0005 (5)
C8	0.0194 (7)	0.0158 (6)	0.0148 (6)	0.0008 (5)	-0.0021 (5)	0.0007 (5)
C9	0.0170 (6)	0.0168 (6)	0.0151 (7)	-0.0002 (5)	-0.0021 (5)	-0.0009 (5)
C10	0.0187 (7)	0.0162 (6)	0.0139 (6)	0.0010 (5)	-0.0010 (5)	0.0013 (5)

supplementary materials

C11	0.0188 (7)	0.0162 (6)	0.0161 (6)	-0.0014 (5)	-0.0020 (5)	-0.0015 (5)
C12	0.0201 (7)	0.0192 (7)	0.0162 (7)	0.0000 (5)	-0.0059 (5)	-0.0012 (5)
C13	0.0274 (8)	0.0156 (6)	0.0186 (7)	-0.0001 (6)	-0.0065 (6)	0.0026 (5)
C14	0.0208 (7)	0.0141 (6)	0.0212 (7)	-0.0009 (5)	-0.0040 (5)	-0.0008 (5)
C15	0.0287 (8)	0.0186 (7)	0.0197 (7)	-0.0034 (6)	-0.0074 (6)	-0.0025 (6)
C16	0.0339 (8)	0.0158 (7)	0.0236 (8)	-0.0045 (6)	-0.0042 (6)	0.0033 (6)
C17	0.0369 (9)	0.0197 (7)	0.0381 (10)	-0.0044 (7)	0.0079 (7)	-0.0009 (7)
C18	0.0344 (8)	0.0217 (7)	0.0212 (7)	0.0002 (6)	-0.0020 (6)	0.0049 (6)
N1	0.0215 (6)	0.0151 (5)	0.0129 (5)	-0.0010 (4)	-0.0063 (4)	0.0013 (4)
N2	0.0199 (6)	0.0172 (6)	0.0142 (6)	0.0000 (5)	-0.0064 (4)	-0.0011 (4)
01	0.0323 (6)	0.0142 (5)	0.0176 (5)	0.0012 (4)	-0.0101 (4)	0.0016 (4)
O2	0.0353 (6)	0.0145 (5)	0.0145 (5)	-0.0057 (4)	-0.0070 (4)	0.0012 (4)
03	0.0310 (6)	0.0167 (5)	0.0137 (5)	-0.0028 (4)	-0.0079 (4)	0.0011 (4)
O4	0.0446 (7)	0.0167 (5)	0.0184 (5)	-0.0065 (5)	-0.0141 (5)	0.0056 (4)
05	0.0320 (6)	0.0162 (5)	0.0177 (5)	-0.0042 (4)	-0.0076 (4)	0.0030 (4)
O6	0.0382 (6)	0.0176 (5)	0.0209 (5)	-0.0043 (4)	-0.0160 (5)	0.0010 (4)
07	0.0295 (6)	0.0163 (5)	0.0232 (6)	0.0001 (4)	0.0034 (4)	-0.0001 (4)

Geometric parameters (Å, °)

C1—C6	1.3900 (18)	C13—C14	1.3745 (19)
C1—C2	1.3914 (18)	С13—Н13	0.9500
С1—Н1	0.9500	C14—H14	0.9500
C2—O2	1.3647 (15)	C15—O6	1.4308 (16)
C2—C3	1.3958 (18)	C15—H15A	0.9800
C3—O3	1.3687 (15)	C15—H15B	0.9800
C3—C4	1.3979 (18)	C15—H15C	0.9800
C4—O4	1.3574 (16)	C16—O5	1.4258 (17)
C4—C5	1.3818 (18)	C16—H16A	0.9800
C5—C6	1.3965 (18)	C16—H16B	0.9800
С5—Н5	0.9500	C16—H16C	0.9800
C6—C7	1.4862 (18)	C17—C18	1.511 (2)
C7—O1	1.2466 (16)	С17—Н19А	0.9800
C7—N1	1.3412 (17)	С17—Н19В	0.9800
C8—N2	1.2830 (17)	С17—Н19С	0.9800
C8—C9	1.4554 (18)	C18—O7	1.4247 (18)
С8—Н8	0.9500	C18—H18A	0.9900
C9—C14	1.4004 (19)	C18—H18B	0.9900
C9—C10	1.4023 (18)	N1—N2	1.3889 (15)
C10—O5	1.3615 (16)	N1—H1'	0.8800
C10-C11	1.3948 (18)	O2—H2	0.8400
C11—C12	1.3869 (19)	O3—H3	0.8400
C11—H11	0.9500	O4—H4	0.8400
C12—O6	1.3672 (16)	О7—Н7	0.8400
C12—C13	1.3938 (19)		
C6—C1—C2	120.50 (12)	С12—С13—Н13	120.4
С6—С1—Н1	119.8	C13—C14—C9	121.44 (13)
C2—C1—H1	119.8	C13—C14—H14	119.3
O2—C2—C1	116.85 (12)	C9—C14—H14	119.3

O2—C2—C3	123.07 (11)	O6—C15—H15A	109.5
C1—C2—C3	120.06 (12)	O6-C15-H15B	109.5
O3—C3—C2	125.32 (12)	H15A—C15—H15B	109.5
O3—C3—C4	115.73 (11)	O6-C15-H15C	109.5
C2—C3—C4	118.93 (11)	H15A—C15—H15C	109.5
O4—C4—C5	117.51 (12)	H15B—C15—H15C	109.5
O4—C4—C3	121.43 (12)	O5—C16—H16A	109.5
C5—C4—C3	121.07 (12)	O5—C16—H16B	109.5
C4—C5—C6	119.75 (12)	H16A—C16—H16B	109.5
C4—C5—H5	120.1	O5—C16—H16C	109.5
С6—С5—Н5	120.1	H16A—C16—H16C	109.5
C1—C6—C5	119.63 (12)	H16B—C16—H16C	109.5
C1—C6—C7	117.84 (11)	C18—C17—H19A	109.5
C5—C6—C7	122.52 (12)	C18—C17—H19B	109.5
O1—C7—N1	121.44 (12)	H19A—C17—H19B	109.5
O1—C7—C6	121.75 (12)	C18—C17—H19C	109.5
N1-C7-C6	116.79 (12)	H19A—C17—H19C	109.5
N2-C8-C9	120.91 (12)	H19B—C17—H19C	109.5
N2—C8—H8	119.5	O7—C18—C17	111.58 (13)
С9—С8—Н8	119.5	O7—C18—H18A	109.3
C14—C9—C10	118.24 (12)	C17—C18—H18A	109.3
C14—C9—C8	121.81 (12)	O7—C18—H18B	109.3
С10—С9—С8	119.95 (12)	C17—C18—H18B	109.3
O5-C10-C11	123.45 (12)	H18A—C18—H18B	108.0
O5—C10—C9	115.45 (11)	C7—N1—N2	119.19 (11)
С11—С10—С9	121.09 (12)	C7—N1—H1'	120.4
C12-C11-C10	118.67 (12)	N2—N1—H1'	120.4
C12-C11-H11	120.7	C8—N2—N1	114.10 (11)
C10-C11-H11	120.7	C2—O2—H2	109.5
O6-C12-C11	123.82 (12)	С3—О3—Н3	109.5
O6-C12-C13	114.82 (12)	C4—O4—H4	109.5
C11—C12—C13	121.36 (12)	C10—O5—C16	118.18 (11)
C14—C13—C12	119.17 (13)	C12—O6—C15	118.75 (11)
C14—C13—H13	120.4	C18—O7—H7	109.5

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2···O3	0.84	2.54	2.9325 (13)	109
O3—H3…O2	0.84	2.54	2.9325 (13)	110
O4—H4…O3	0.84	2.25	2.7009 (14)	114
N1—H1'···O7 ⁱ	0.88	2.04	2.8844 (15)	160
O2—H2···O1 ⁱⁱ	0.84	1.86	2.6871 (13)	170
O2—H2···N2 ⁱⁱ	0.84	2.57	2.9293 (15)	107
O3—H3···O1 ⁱⁱ	0.84	1.88	2.7200 (13)	177
O4—H4···O6 ⁱⁱⁱ	0.84	2.14	2.7366 (14)	127
C14—H14····O2 ^{iv}	0.95	2.42	3.3539 (17)	167

Symmetry codes: (i) x, y-1, z; (ii) x+1/2, -y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x-1/2, -y+1/2, z-1/2.

